Université de Strasbourg

Masaki Kashiwara

Masaki KashiwaraMasaki Kashiwara is Profesor emeritus in Mathematics at the Research Institute for Mathematical Sciences, Kyoto University. He has made leading contributions towards algebraic analysis, microlocal analysis, D-module theory, Hodge theory, sheaf theory and representation theory. Together with Mikio Sato, Masaki Kashiwara established the foundations of the theory of systems of linear partial differential equations with analytic coefficients, introducing a cohomological approach that follows the spirit of Grothendieck theory of schemes.
Professor Kashiwara was awarded the Iyanaga prize by Mathematics Society Japan (1981), the Asahi prize (1988) and the Japan Academy prize (1988). He is a member of the French Academy of Sciences (2002) and of the Japan Academy (2007), and Doctor Honoris Causa at the University of Nancy (1996) and the Universite Pierre et Marie Curie (2005).

In honour of the visit of Professor Kashiwara to Strasbourg, a series of lectures by colleagues in the field has been organised, from 3-6 April 2017, organised by Professor Nalini Anantharaman, who holds the USIAS Chair in Mathematics, and Adriano Marmora, associate professor at the Institut de Recherche Mathématique Avancée (IRMA). On Thursday 6 April Professor Kashiwara will give a keynote lecture.

 

Programme 3-6 April 2017

Monday 3 April
   
10:30 Welcome with coffee IRMA coffee room
11:00  Bernard Leclerc (University of Caen) I Salle de conférences, IRMA
14:00 Andrea D'Agnolo (University of Padua) I  
     
Tuesday 4 April
   
11:00 Andrea D'Agnolo II Salle de conférences, IRMA
14:00 Bernard Leclerc II  
     
Wednesday 5 April    
11:00 Pierre Baumann (IRMA, Strasbourg) Salle de conférences, IRMA
14:00 Andrea D'Agnolo III  
15:30 Bernard Leclerc III  
     
Thursday 6 April
   
10:30

Introduction
Catherine Florentz (Vice-President of Research, University of Strasbourg)

 
10:35 Gérard Laumon (University of Paris-Sud) Petit Amphithéâtre, UFR de Mathématiques
14:00 Jean-Baptiste Teyssier (University of Leuven)     
15:00 Claude Sabbah (Ecole Polytechnique, Paris)  
16:30 Introduction
Sylviane Muller (USIAS Chair in Therapeutic Immunology)
 
16:35 Masaki Kashiwara (University of Kyoto)  
17:45 Reception Salle Europe, MISHA

 

Summaries and biographies of the speakers: 

Bernard Leclerc - Canonical bases and cluster algebras

In 1990, G. Lusztig constructed a new basis of the positive part of the enveloping algebra of a simple Lie algebra, which he called the canonical basis. Its definition relied on the theory of quantum groups and the geometry of quiver varieties. In 1993, Berenstein and Zelevinsky formulated a conjecture on the dual of the canonical basis, that might lead to a more combinatorial description of this remarkable but rather mysterious basis.

In 2001, Fomin and Zelevinsky came up with a more precise conjecture in terms of a new class of rings called cluster algebras. The notion of a cluster algebra is elementary and combinatorial, and there are many examples, among which the dual of the positive part of the enveloping algebra of a simple Lie algebra. Fomin and Zelevinsky conjectured that the dual canonical basis contains allsis.

s/kbrLink(thi algebh tl canonical ballsisloxve din/li>< Skaarng-- Categor-Kim-Oityusbutioation of clusteruivhodp> . The.ummaries ="float: right; margin-top: 5px; ;" titn-left: 10pxgin-titn-leasaki Kasclerc - Canonicoads/RTEmagicC_photo_Masablerc -Kashonicalt="Masaki Kasclerc - Canonicoa" height=3128" class="2div> Tetext-align: justify;">In 2001, F of ale=-venie a keyver comnote lvinccesrole=ng a cohoy. Togoh Acadelev- conjectured that thes thesr at e La keybconjetheoessor M. - Categortyle="text-align: justify;">In 2001, Fttp://www.canalc2.tver hr" tcaenra/amashonic"_blank">Photos of clerc - Canonic/ul>er of Kashiwara e Ls at the Research I of Caen) s torkbutild has doms. N=-vngs On t a (LMNO member of Senira s 2017velopinge Recherche Fry" wp> <10tor Honeditoisit of   JvennpositiCal descriptioTethersA  ometry os at the br /y citbr ofttyle="xt: [end] -->

Bernard Legnolo - On the Riemann-Hilbert correspondence
  • In 1990, Grrespon'/a>wheoy-firsurs le=muresso kned" asnn-Hilbert corresponds le=m) asksmaticping xier " wppartial diord/li>yial equations with analytic con tf tbetatie theosbut theitographiethi dromy Bereh cls

  • whenatie theomeromorpual fnjeed tn href=raphieysis, linear Bereping arl, a claiUnive Categori contelizctuit combiencewhenatie theohhe i alctheory, Hraphieper Caeeory avor pnmbienlgebxplesifoldtyle="text-align: justify;">In 2001, F of videog

    s le=muaticartroley irtie theohhe i alctheory, Hra(a.k.nd n-Hilbert c–rrespon–Birk onfds le=m) rganised,basnacts)aticaeysts)timeday evelopingal eic-- ogralsiscomelituresubr Mathemlank">ogoh Acaoation Masa"csc/>ereping80'r, Deify;edphieMinary"gr at Colldmbiencewhenameromorpual d tn href=raphiesors solv>canonis le=muatic contelohhe i alctheory, Hraevinsy/dime copyon of d a new bs remarkaemlank">ooation <. A the of ms.In 2001, Fttp://www.canalcdotatiiver hr" tpd.it/da the "_blank">Photos of gnolo - On the /ul>er oKashiwara e Ls at the Research I of Caen) membetorkield has alo -strAnalysis, miieManalysis, A-moduletyle="xt: [end] -->

    Bernard Lemann - Crystals and bases of tensor products
  • In 1990, G. Lping arl, 90'r, e Categori relithecd bases osrtimiofeitiensor protion theory. Tsm groups and the gor Hondespan>en)th anal. SubrwitearctorkieSkaarhategor,onstruct,onittelstalor Hon and Zelev-delev- conjectureelucidjectuka onew b dualf ka sorial descriptioobhat r. ="float: right; margin-top: 5px;gin-ltle="Masaki KasCrystaloads/RTEmagicC_photo_Masaki_KasCrystalalt="Masaki Kascrystaloa" height"2sc5" />Masa"7sc/>etalsisnjecience

  • she positiG. We a keysh="4 at Cpon speakeensor ual cescured by In 2001, Fttp://www.canalc2.trasbg.fr/~marmora/ambrystal"_blank">Photos of tann - Crystals/ul>t thNRSe owversieem>Instite Recherche Mathématique Avancée (IRMn Thursof a)

    Bernard Leumon - Exotic Fourier transformations over finite fields
  • In 2001, Fomdepe <13)ng a cohoasis of that followooLy"gs'/a { riptin) sations pondmorpuasar />

      sh { riptin) < called tganised,loxve din/fukeynconteli)

        <. Lpingasek, I a keyon theo rel=e ow-- r ual cw leave oriliilyoobass="dytic cEmdonuel Letellormtyle="teFttp://www.canalc2.tva07), ieque-excesmin/br/Lier s-the owourgl-A07), ieq s-ue-exces-/-L/gen - -lotic aet="_blank">Adriano Maumon - Exotic /ul>er of hNRSesenira owversieem>Instit of Caen) < InstitÉechniNoverhniSupmonie dua HonP/td> canoniClayInstitute A Iyamaticpingat e Lmarka oLy"gshphiesie,basd'/aFof td coml Lemdomatic" tombin the gor 'un Co proeld has Ly"gshp-6 Apreld nue Fregether were2012 thebeth a oma 2017velopingA Matcancal Sciences, Kan (19tyle="xt: [end] -->
  • Bernard Leste Teyssier - Skeletons and moduli of Stokes torsors
  • In 1990, G. Lpingysis, geefa f cluster alal equations with analye Lmneienlgebxp In athe,a>

  • llbar".emann-Hiorioush td, Deify;ed relithe.canoni/td>clustw Mikioespbinsnd moduienlIn 2001, FAft> sol=e o in thref=raory of Sorss te a keyexplaif thwowoousa om In aarch, Deify;e’s snd moduienn terms of af-8"acsis.sr tr0owooloxvecping xier " wpparsnLinalysis, In 19 he eauiveszcts)sors<. We a keysthwothwowy of quiver varhar oStokes cancbe usrdowooloxvecof tldsAdriano Maste Teyssier - Skeleto/ul>er of doctoran>< 2017velopingM Miuslecour incoeld pms os at the Research Is at the Resdep enmearch, KU 

    Bernard Lebah - Irregular Hodge theory
  • In 1990, GStferets)aril ry olbert car e=muatictial dial equations with analye Lmneienlgebxp In athe,aI a keym clvl/a>ory of among wye Lhyperf quives, r e

  • cluste'iodge theory<',et ainsi ey i a cohoasior Deify;edirens84.aI a keyosso explaif of Pi aquast varhar oquantumld rellustertic cmiodticsymuiver varFaReg"float: right; margin-top: 5px; ;" title="Mp: 5px; margin-left: 10pxbottomitn-leasaki Kasbah - Irreguloads/RTEmagicC_photo_Masabah - _sregulalt="Masaki Kasbah - Irreguloa" height="70" class=110div> e="text-align: justify;">In 2001, Fttp://www.canalc2.tver hrpue, Paris)Rebah - Irregul/ul>er ohNRSesenira owversieem>InstitCppanematimues xotuatirS0h IytzvelopingÉechnique, Paris)aumember otorkbutild has doms.3,emaralled ther onhwowy ojvennposme byrmtyle="xt: [end] -->

    Bernard Lehiwara - Categorification of cluster algebras via quiver Hecke algebras< li

    In 1990, G of a cluster gebras via quiverd thina cohoasior delev- conjecturday evm clvl/lustth a aril ry om-- orss+xmlv onew b dualf upper < comoation ofy gebras via quive. pt')lheoka aoation < rganlonew b dualf thi idal bation nitionck theory of the rganlogebra is elementnew b du. Salgebrory, HraenceReg"float: right; margin-top: 5px; margile="Mp: 5px; ;" title="Masaki Kashiwara" src="uploads/RTEmagicC_photo_Masahiwara_" onfocus_smi ealtegaltegaki Kashiwara" width="220" heigh188sc5" />Masa"1div> e="teFttp://www.canalc2.tvkurims.ures/mu.acalt/~kenkyubu/" onfocus="blank">Rehiwara isl>er oKashiwara n Mathematics at the Research Institute for Mathematical Sciences, Kyoto University. He has made leading contributions towards algebraic analysis, microlocal analysis, D-module theory, Hodge theory, sheaf theory and representation theory. Together with Mikio Sato, Masaki Kashiwara established the foundations of the theory of systems of linear partial differential equations with analytic coefficients, introducing a cohomological approach that follows the spirit of Grothendieck theory of schemes.
    Proyle="xt: [end] -->

    nu-mobileaj">
    nu-mobil-TYPO3c-defaulResee-xsol-xs-6"

    ove-tton daer> labelmatisttitute-box"c-defaulRtranet input nt')st_piindexedtitute[stord]xt/css" rel=" placeUSIAbodyMathématr"unisttitute-box"c-defaul ove-ons tol Fin B
    "PrIltedy> nt')st_piindexedtitute[_a href=s] Fin B "PrIltedy> nt')st_piindexedtitute[poi aqu] Fin B "PrIltedy> nt')st_piindexedtitute[el=] Fin B "PrIltedy> nt')st_piindexedtitute[lass] Fin B <
    bar-default" role="navigation">